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A NON—L iNEAR RENEWAL THEORY SIIH APPljCATl(,N~
TO SEOUENTIAL ANALYSIS II

by

r. i. Lai and D. Siegmund

SETh~4AKY

This paper continues earlier work of the authors. An

analogue of Blackwell’s renewal theorem is obtained for prccesses

Z = S + F, , where S is the ~
th 

partial sum of a sequen~~n n n n

of independent identically distributed random ~osriabies

with fin ite positive mean and F, is independent of X ,X - , .. and
n ntl n-t-Z

has sample paths which are slowly changing in a sense made precise

below . As a consequence , asymptotic expansions up t i  terms tending

to 0 are cbtained for the expected value at certain I L t ~~~t pas~ age

times . App lications to sequential analysis are gi~ en~

1. INTRODUC5I iON

Let X ,X
2
,... be independent identically d~~ irio uted random

~iariable~ with posit ive mean ~i and finite variance ~J
2

. Let

X + ... -
~ X and Z = S + F. , where for ea~h n F, i~, Inde—

r~ 1 n n n n fl

pendent of X
1,
X~~ 2 This paper continues the program b~ guri

by Lal and Siegmund (1977) of developing a renewal theor~ icr 2

under conditions which guarantee that the sample paths of the ~~

- _



pr ~ ess are slowly changing in a suitable sense made precise below .

In order to facilitate ~omparison ot  these conditions for different

th eorems and to provide .i convenient reference , the ma in result of

Lal and Siegmund (1977) i s  stated as Theorem 1. The interested

reader rn~,v find the informal discussion contained in that paper

he lptu l in mot ivating the decomposition of Z
n 

and the conditions

imposed on 
~~~

.

For b ? () define

(1) T = T(b) = inf{n : Z >b}

and

(2) T = i (b) = lnf~ n : S > b}, r
~ 

= t(0)

Theorem 1. (La l and Siegmund , 1977). Let 1/2 < c~ ~ 1 and assume

that

~3) b
a(T_b ~~

l) 0

in probability. Suppose that for each p -‘ 0 there exist n ’ and

p ~ 0 b uLb that for all n > n ’

( 1~~ P 1 max - 
— I > n }  < r1n —

It X
1 

is  non—lattice , then

(5) Urn PiZ -h~~ x} = (ES )~~ I P{S >y}dy .
T T

+ (O,x) ~~



The first results of this paper are an analogue of

Blackwell’s renewal theorem and a corollary .

Theorem 2. Suppose there exists 1/2 ~ a < 1 such that the following

three cond itions hold :

(6)  E I X 1I
2
~~ 

<

(7) for each c > 0 E
1 

P~~ I F , I  > n  < , _

and for each p > 0 there exist n’ and p > 0 such that

(8) Zn<j<n+pn
a P {j F ,

1
- F ,~~~> n }  < p  ( n > n ’)

If X
1 
Is non—lattice , then

(9) ç P{b<Z <b+h } h/p (b~~~ ) .

Corollary. Suppose there exists ‘/2 a < 1 such tha t (6), (7), and

(8) hold. Let p > 0 and assume E(X~)~~~
1 

< ~~. If {A
b
, b~~ b0

} as a

fami l y of events and {((F,~~_ F ,~ 
1
)
.f
)P I~~~, b h

0
} is uniformly

integrable , then so is {(z
T
_b)

~ 
I~~
,
, b~~ b0

}. In par ticular , i f

< ~~~, then ((Z
T
_b)”, b > b

0
J is uniformly

integrable.

Theorem 2 and its corollary are proved in Section 2.

Theorem 3 of Section 2 is a somewhat different renewal theorem

required by some applications (cf. Section 3). Theorems 1 and 2

together imply the main result of this paper , Theorem 4, which

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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contai n~ an tsymptot ic expansion for E ’r ( h )  up to terms which

vanish as b

In man y appi i c~ttions t r uc behavior 1 ) 1  F.
0 

is governed by a

term invol ving (S - ; ~,n; and to the extent this is  so , dive rse

cond itio r .s on rn~, v be r e p  ~~~ ~d h ’, moment c~’ndlti ons on X . For
11 1

technical reasons required h’ d i fferent app t1~~~t i ons the statement

u t  Theorem 4 is q u i t e  L o m p i i c < t t i  1. Pr p m i r  ion I is designed to

fa Lili t ate app liciticns in those ca~ e~ in which a single moment con-

d ition suft i L C S  to replace several ot the more cumbersome conditions

on . For m o t iv a t i o n  of t h i s  f o r m u l a t i o n  and method of proof seeri

Pollak and Siegmund (1975). The proofs of Theorem 4 and

Proposit ion I are given in Section 3, which also contains some

information on V5i r T as b • ~~. Some app lications are discussed in

Sect ion 4, and Section 5 contulns a comparison of the results of

this paper with tnose of Woodroofe (1976a , 1977).

Let 
~~~~ ~~~ ( ( X

1, F
1 i , . . . , ( X , F . ) ) ,  n = 1,2 

Theor em 4. Assume that tot some ~ ) 0

( i C y  Pkr< ~~h} ~ o(h~~ ) ( h  •~~~)

A. , : . ur r e  t h a t  t h e r e  e x i 5 t s  a sequen .e of event~-~ A ~ such thatn a

(11) Z P( LI A~~) <- (A omplement of A)
k~ n

and on A
a

(12) F — 1(n) + V~ ,

4
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where for some 1/2 < a < 1 the following conditions hold:

(13) f : {0,~ ) i~2 satisfies ~x
_a
f(x) I + sup ~,jf(y) — f(x) 0

x<v<x.px

as x -
~ ~

; V is ~r — measuraole and satisfies
a

(14) E~ P(sup k
_t
~IV k I > c }  < (c ’O)

k>n

(15) V converges in distribution to a random variable V

(16) the sequence V~ — max is uniformly int egrable
n<j <n+n

and for each p > 0 there exist n’ and p > 0 such that

(17) a — V I ~~ r)) < p (n>n ’)
n~j<n+pn

Suppose is non—lattice and (6) holds. Then

(18) pET — b — f(M~~b) 
— EV + ES2 /2ES + 0(1)

r+ 1
+

as b -‘

Proposition 1. Let Y1,Y2,... be independent and identically dis-

tributed with mean 0 and finite variance a2. Let u and w be

random variables such that for some positive constants c, C
n 

0,

and B

(19) - ci < n 8 and l v i  < c

Assume that E I Y 1I~ < ~ for some p > 2. Let V — U (Z
~
Yk
)
2/n + V .

Then V~~~’ V , where V has the distribution of cox~. Also V

I
1

- -
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sit is fics (14) for mv i 4 /p  — I and ( 16 )  f o r  any 0 ~ ~ 1. f~

addition r

0 ‘ i. m1n(p~ /2 , p/ (p- $- 2))

g I \tn any n : i r t exist a ’ and p ‘ 0 such that

(.!O) P~ max 1V 1 — v  L n }  < n ( n - ’n ’)
r~ n~ n n’ i ’ j  -

In part icular (17) holds .

2. NON-LINEAR BLACKWELL ’S THE OREN S

Proof of Theor em .~~~ The notation below is chosen to facilitate

compari sons with the proof ot Theorem 1 of Lai and Siegmund (1977),

wh t &: h contains similar basic ideas although their technical imp le-

mentation is different.

I5et i, ~~~, arid hi as in the statement of the Theorem . Set

(21) n
0 

- h ) ,  n 1 ( f l
() 

- ‘n ~~i 4 J ,  n
2 

fn
0
+pn~ /4J

By Lemma 1 below for a sufficiently large and fixed , for all suffi-

ciently large b

(22)  P t b ’~Z < h t h }  <
m n ’ n

1 
— f l —

and also

(23) P (h<Z ~ b+h } 
-. 0 as b -. 

~~—

Obviously,

6
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24) P!b Z <- h + hJ -
~ 0 as b -.

n~m 
—

i t  remains to e s t i m at e  the series 01 terms Pjb~ Z < b t h f  toi
— n—

a ~- n ~- a . Fcr c~ac h ii < n
1 2 1

P1 b < - Z (h -i-h i ~
. ~~~~ —~~~— n —  — n n . —

( 2 5 )
+ P f b — r l < Z  -‘- (S — S )<b -r fl -t fli— n ra n —

By (8) and (21) for all targe b

~2~ ) z < Pi~~F . —~~~~ J >~~~~ p

Furthermore ,

(27) 1 - P(b — ri < Z  + (S — S ) <b + hi- n} = Eg(b —
n~~ n~n2 

— n  a r, — n

where

(2t1 ) g(t) = L
j<n

2
_n Pt c. — P ~~~ S~ ~~.. (t  — r~) i- n i- iri~

It will be shown in Lemma 2 below that as a consequence c~t

Bla ckwel i’s Theorem -

(29) Eg(b — Z  ) (h + 2 r i ) I A
I

Then by (22), (23), (2~e ) ,  (2 5) , ( L b ) ,  arid (29)

lirn sup £~ Pjb~ Z <b- ’-h } < 2r1 i- (h + 2r)),~
b -~~~~

Letting p “ 0 gives Oric  inequality. rhe inequality ~ i the other

d~ reL t1on follows by a 5imllaz but easier argument , which comp le tes

the proof.

1

—- - .  ~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Lemma 1. Under conditions (h) and (7) for m sufficiently jarge and

f ixed , m r  a ll lar~’o h (22) holds: 5tlso (23) holds .

Pro of. l e e  () < ~ < ~ii/ 9 . Note th0r for all large b and n > n
2

, if

a CL
S — nu — ~n and — ‘.n , then by (21)
n —

S + F .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~a n —  — 2 0

From (6)  ~t follows that E P { l S
n~~

flsi I ‘n ~ ) < ~ (cf. Baum and Katz ,

1965 , The ore m 3) and hence by (7 ) as b

P {b~ Z ~~b + h ~ < (P{~ S — npj > E ~n
a} + P {l ~~ 

>cna}) 0
— f l—  — n o

2 n

This proves (23), and (22)  fol lows by a similar ar gument if a is

chosen so large tha t

~n>m
HSn~~~

uj -~ r n ’
~} + PH~~ I 

CL })

Lemma 2. Under  cond i t ions  ( 7 )  and (8) , f o r  g def ined by (2 8 ) ,  the

lim it (29) holds .

Proof. It suffices to show

(30) g(b — Z ) (h+2ri)/p a.s. (b -* c~)n
I

and tha t g i~ bo unded , for then (29) follows by dominated

convergence. Let v(b) — n
2 

— n
1
. By (7) and the strong law of

numbers Z - 1Jn + o(n
a
) b — pu~~~ b~ /4 + O(b

a
). Hence by (28),

n
i 

1 1
to prove (30) it suffices to show that for arbitrary real numbers

z ( b )  — F4i
1
~~~~ b

u
/4  + o(b L

)

8



(31) E
l <\,(h) 

Pi z ( h ) .~~S 1~~~
z(h) +h- i- 2n} (h-4- 2n )/o

But if j > \)(b) and S . > 2lf i/): then by (21 S . > 
~~~~~ b°/3 -i- a (1)

> z (h) + h -s- 2~ l r  ill t i m  c~ h , arid it fol 1~ ws thct

— 
~~ ‘c(h) 

P~ S 2 iu /3} ()

t r iO s  (U) and w i t h  ii ( t o ) t~~i ! w  t o r n  h I ~~~K w i H 1 ’s T r 1 4 ~~~~ r , ,  : C i r  ?

is bounded i s a c on s  a to ri . e L

(32) g(t) ~ 1 + P~ - h - ? r ~~~S~~~ h + 2  -

The series in (12) converges bc cause the r~indo~r Wd k - S ~ i s
n

trans ient (cf. Feller , ]9Ef~, pp. 1 )  f4 . 3 .

Proof of Corollary ~~eorem 2. Assume E(:~ ir.(r — )
i-~ P <

—- _______________—-— - — -  ii n—In
For x > 0 and all li r~~ h

P{Z -- h > 2x b , Z ) h + x~T — — n~~~ r i —  n

(33)
- +

+ Ptsup(’. — ) > xn i i - i  —

n

Also

P {z ~ b , Z ~~~~‘ b - + x } =  J P(\ > i x - v i E  Pt ?- Ed v~n 0  ii fl r i -- l  — 
( — ~~ b] 

— - t =( )  n

(t4) { 
~~h + x — k }  E~ P { k — I < Z  <k}

— k~~~’ 1— n 1) a—

const.(f P{’Y~~~ y}dv + P{X 1~~
x -I })

To see the last inequalit y in (34), note that by ~)Io~ rem 2 t l ~~ m e

- 

- - -

~~~~
_

--



exist s k such that t~~~r a l l  k k ~ . P{k ‘ Z k+ i} c
(1 - - 0  n f l  n— - -

wh ile (0 )  and (7) imp ly ~i P~ Z < k
0

-r t o  ~ (cf. Baum :ind K.i t z , l9bS ,

Theorem 3). T h e  uni form m q te ~’ r.i i II it v of (Z
T 

— h)~ f o l  low~, from (3fl

and (34~~. If on ly 
~~

-T — 
‘T—1

1 
L~~ 1

A
} is assumed t o  he un it orml y

integrabl e , (33) may he rtj ’ !;o hs P (tz
T

_ h ?2 x
~ 

‘ A~)

< ~~~. P~ 7 < b , Z K b t x }  -
~ P({~ 

- - ,  ~ xJ A )
— ( 0  n ii iii- I — T I — — b

and the rest of the proof. follows as above.

The fo1lowin~ theorem is equivalent to one of the m r i n

results of Woodroofe (1976a) in a nunber of special cases , although

its abstr~-s t formulation and proof ire different. (See Section 5

for a more systematic comparison of the results of this paper with

those of Woodroofe , 1976a.)

Theorem 3. Suppose there exists 1/2 < ~t < 1 such that conditions

(6) and (7) hold , and I ~r each r~ > C) there exist n ’ and p > () such

that

(35) 
- P~ max 

— C 
~
- fl} < n (n  n ’)

I fl — —
n~~ <n-i-:n n~ i’•j

I f  is non—La t t i c e , then r~~~1 a l l  v > 0

(3€) E P{T -~ ri , Z ‘b— y} ~~ P S  t for i ll n>0 }dt
n~~) n —v n —

Proof. Like Theorem 2 the proof of Theorem 3 consists of reducing

the general case to t h e  ~~~~~~ I) 
-~ ~~ This r € d r i c t  t o n  is similar to

th e proof of Theorem 2 and Is omitted . However , unli k e Theorem 2 ,

wh ich reduces to Blackwell ’s Theorem in the case F~ ~ O, the
n

In

-J



:srrespond ing vers i n of Trtec ,r r~ 3 d e ~ not . ert t o  have irpeared in

the literature (althoug h under tron ’e~ issumpr ions it is Impl ic - i ow

Theoro~n 3 .1 o f Woodro o f e , 1976a).

Assume then that - 0 so t h u  7 = S ~ni T = - s t
0 n ~

M = max (0 , S . . . . ,S ) and = min(i),S ,S , . . . )  . Then i th~n 1 n 1 2

(37) E NM h , S -> b — v} ~ I PY~~ > t~~~t t
n 0  n— n -

(—v ,O J

Let ~(n) denote the 
~th (str1~ t) ~scending laddot ti~ .e, i.e.,

c~(0) 0 and for  n > 1 ~(n) = inf~ n n >o(n—1),

(o( 1) = Let I inf{n n > l , S~~~~0 k .  By considering the

(uniquely  defined) smallest index k < n for which S
k 

= one

obta ins  fo r  0 < y ~ b

P~ M~~ ’b , S~~> b — Y }  = E 0 I P S . < S
k v’ i <k ,

(b—y ,b]

S
~~~~

S
k ~~k < 3 < n , S _ S

k~~~
h _ v _ x }

Summing these terms for n = 0, . . . ,  and rever sing the or d er or sum-

m a t i o n  y i e ld s

C 3~~ ~~
° 

P~ M < b , S > h - v }
n 0  n ii -

— 
k i t  n k

1 PkS
I
< S

k 
11

~~
k,S

k
E dx)Ptr

+
> fl_k,Sf l k

> b _ Y _ X
~(b—v ,b J

- 

~ ~ 
~~—o ~~~~~~ ~

n , S
fl~~~

x _ v } E
k O  

P{S I
( S

k 
O di  k , Sk

cb  d x

ii .



No ~

~k 0  
P C S . S 9 k, ~ ~ 0 ) -  d x~ k=O 

L
0 

P{ i (n) = k, S
k 

h — dx~

~ O s c b — d x }n= i) 0 ( n )

Sinc e P~~t > i t . ~
- - ~~~~~ F~i s — S  < i ) r 0 - K i < n , S -~x — y l , at

+ 0 0 t~~ — — n

fol1ow -~ that

‘ a , S ‘ x — v ~ = ‘7 -‘S  ,‘0 ’- i ~~~n , S -‘ x - - y ,n~~fl + n ~=1) i —  ru — — n

( 1.0) s — S > n },’P{ i =
a —

Et~ P’M~~> x — v }  (0<x ~~ v)

The l a s t  e q u a l i t y  uses the  w e l l  kflown fact that ET
÷ i/~~{~ _

(cf. Fell er , 19 66 , p. 379). Since P~ M* -~ t }  is d e c r ei s i n g  in t ,

applying Blackwell’s renewal theorem to the right hand side of (39)

and ta’~ --s’ into a .:olmt (iOU , (39), and (40) yield s

~~~~~ 

P {M~~~ b , S ’b- y) ~ 
p~~ PO’ -~ ~

x_ y}dx/ES
~

10 ,v) ÷

I P’M~ > t } o t  -

(—  V , 0)

Remark. tt ~ - condit ion eh~ t 
2 

Vi r < ~ as  no t  used in  the

p re cedin g pr cst t sr the spe ial ( ~ se ~ 0.

3. EXPANSIO NS OF P1 (b) AN D \ar T(b)

Int uitivel y the random variables 7 and T(b) are the same
n

var iables In Theorem 4 as in Theorems I md 2. For technical

12
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reasons , In th~ proof that foli ~~~— ass- randcim var u i o i c ~ “ ‘ and l ’(h)

will be defi ned in terms 01 the or iyina l Z
n 

and T(no - ~a i d fLu stems I

and 2 will he applied to these new vari able s .

Proof of Th eor e~n .~~~ Let 
~~~~~~ 

he a s eq u e n c e  ct p o s l t i v t  nu rT h~- r S

tend ing to (I to be further specified below . Since f(x) = o (x i), tcr

appropr~ atelv chosen {~~~O the re exists an integer n~ 5u~ t-u t h t

1 (x) ! < c n ~ for  all x -‘ n a
0
. Let L

1 
sup{rl :A ~~c-urs~~,

L sup {n: I V  l > c  n~~~, L su p t n : IS — ri o -s  n~~~, and2 n — n  3 a — n

L 1 + max (n 0, L1,L2,L3). By (11) EL
1 

c 
~~~. By ( i S )  (1 . Baum and

Katz, 1965 , Theorem 3) and (14) for appropriatel y ch osen ~~~~J

EL
3 

< ~ and EL2 ~~. Hence , EL < ~~.

Let ~~~
‘ = 0 fo r  n < a arid for n > n set
a — 0  0

— 

~n 
1A {I v  < € Le t Z ’ S + f~

’ , T ’(b) = in1~ n Z ’ -

and B - B
b 

{L < min(T,T’)}. Note that for all n.

For all c > 0 fo r  su f f icient ly large b on B

( 41) T
b 

— T~ , ZT ~~~ , a r d  b~t~~ — cb ~~~ T
’ ab 0 ’ +

b b

The two equalities in (41) are obv i ous . The inequality In (41)

fo l lows f r ru m

h < Z ,~~ < U T  + 3s
1~~

(T ’)~

and the corresponding inequality for T ’ — 1, which hold on B. Hence

by Wald ’ s len =a

TT

~



(42) sET — .~~S1
dP = 1

B
5
T’ dP = bP(B) -e ~(Z,,, —h )dP — ~ ~~~~~, dP

It will be shown in Lemma 3 below that

(43) bP(B) 0

and in Lemma 4 that

(44) 1 S
1

dP = 0
B

as b -
~~ ~~~. It is easy to see that condition (3) is satisfied for the

random variables T’ and hence with the help of (15), (16), (17),

(41) , and (43)

(45) J~ ~~~~~~ , dP = f(b/p) + EV + o(l)

Finally ,  it will be shown in Lemma 5 as an application of Theorems 1

and 2 that

(46) 
~~~ (Z~ , - b ) dP  ES~~ /2  ES

Relations (-.2)—(46) yield the theorem .

Lemma 3. Under the conditions (6), (11), and (14) the relation (43)

holds.

Proo f. The cond itions of the lemma imply that EL ~~~ , where L is

def ined as in the proof of Theorem 4. To prove (43) it suffices to

show that

( 4 7 )  b P { T< L }  0

and

14



(1.8) b P~T
’ <L } -

~ 0

Now for arb itrary S ~ 0

P{TcL } < P{L>3b} + P{T< 6b 0

< (ób ) 1 I LdP + P~ T < ó b ~
~L>~Sb~

Hence (47) follows from (10) and the finiteness cf EL. Since by

definition ci ~ 2t~~n~~ it may be shown that bP {T’ <~~ b~ 
— -  0, and

then (48) follows from a similar argument .

Lemma 4. Under the cond itions (6), (11), and (14) the relation (44)

holds

Proof. By the Schwarz inequality and Wald ’s lemma for squared sums

Ii’ s dPl =
~~~

J ( S
T
_ uT)dP + TJJ .TdP l

B
T B B

< {E(s~~- 0T)
2
P(E}~~

2 
+ ~ IT d P

B

{0
2 E T p (~ )~~

l / 2  
+ ~ .T LdP -e I dP.

{T<L} {T ’<L-I }

It is easy to see that ET — 0(b) and hen:e by Lemma 3

E ( T ) P ( B )  -+ 0

The conditions of the lemma imply EL < 00 and hence

~CT <L}
LdP -‘0

To comp lete the proof it remains to show

15



I TdP -’ O

~T ’<LeT}

If T > L , then IS T 1  ~(T 1)~ < T~ and R1_1 1 < 
~~~~~ 

SO

b > ST_i + 
~T—l 

u (T—l) - 3T~~. Thus for all large b

{T > L} C {T < 2b’ii} and it. follows that

TdP < 2b/U P{T’ <L} -‘0
{T ’<L~ 1’.~

by Lemma 3. This completes the proof.

Lemma 5. Under the conditions of Theorem 4 , the relation (46) holds.

Proof. Lemma 3 and (41) show that condition (3) holds for the stop-

ping times T’. Also the conditions of the corollary to Theorem 2

are satisfied with the events A of the corollary being the events B

def ined in the proof of Theorem 4 (recall especially (13) ,  (16), and

(41)). It follows from Theorem 1 that Z,~, — b converges in distri-

bution and from the corollary to Theorem 2 that the (Z,~, 
_ b)I

B 
are

b
uniformly integrable. The lemma now follows by simple computation .

Proof of Proposition 1. The convergence in law of V is immediate

from the central limit theorem . That (14) is satisfied provided

p -, 4/(1 -+- ci) follows from Theorem 3 of Baum and Katz (1965).

Let — The calculations given below prove (16) and

(20). Several applications are made of Kolmogorov ’s inequality for

submar tingales (c f .  Chow , Robbins, and Siegmund , 1971, p. 24) and

the inequality

(50) EIU~~
’< C n ~

’2

16



( c f .  Doob , 1954 , p .  2 2 5 ) .  Herc ’ and In  wha t  follows C denotes eon—

stants which may differ from one appearance  to the  n e x t .  i he  p r o o f

of (16) is an i m m e d i a t e  consequence  of the  inequa~~i r i c s

2
“.ix ~~~~ / l ~~ ~ x }<P{ max 

~
‘ ‘mx)

fl< ~~ n+n ’ ~ 
— 

n’j<n+n~ ~

(nx )~~~ü F~ L~ 
0 

C
—

$ f n+n

To prove (20)  n I t  t h a t  ‘or 1 > n

2 — 1 2i — u  U / n — n  U (u — u )
n n  n 1 a

+ ui~~
i
~~~

(I’ - u ) 2 
+ 2C1U (U - U  ) - (n 1)~~~(i - n ) U 2 }.I n n i n a

Hence (20) is a consequence of the following inequalities .

Z
’
~~~

’
~~~~ P{ max i~~~(U -~~~~ 

) 2 > }  < ~n+pn
a 
P{ max ti -U 1

2 >fl fl}j n  I n — j—n I an<i~~ n

a— p 12 ~n-s-pn E l u  —~~~~
~~. (nn)

j—n j a

a
< C (n n )  p~ 2 1

n-f pn 
~ 

p / 2
I — n)

i-n

/2 a 2
< C(nnY ~

’ (pn )

a
1ma,~ i~ lu (Ii — U  ) I  >r~}j n  n<i~ j ~ i n

< EfP( max ~U 1 -u f > nflhIU 1]
n<i~J 

n a i m

a 2 a 2(~~)P 
~~~~ EIIU I~ lv — u  < C fl~~~n~~~ (~n )j—n n j n

17
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I

P~ o.x (1 — n/) )t~~~ / n > n’
~ Hn

1 
~
2 

> r n
1 

~~/p }
n~-l -

~2
c C (~~/ r ) ~~ ri

~+ n — .1 2 .- —l 2 — B
P(n U max H — u nr ca Pfn t (~ n ) q}

1=n n I fl — a
n~ I

~~

Th e preceding results show that to a first order approxima—

tli )n the behavior of t Z }  and T is a s y m p t o t i c a l l y  the same as that

of { s }  and T , a l t h o u g h  d i r f e r e n c e s  appear with higher order asymp-

t o t i c  expansions . According to Chow , Robbins , and Siegmund (1971 ,

p. 31) Var(t) 0
2
b/ji

3 as b -‘ ~~ ; and it should come as no surpr ise

that under conditions similar to those of Theorem 4, one may show

t h a t  Var I - it
2
h/p

3 
also . Indeed , such a result has been proved by

a d i f f e r e n t  method and a p p l i e d  by Woodroofe  ( 1976a , 1977) in several

special cases . The details ci  such an analysis seem sufficiently

s i m i l a r  to the  proof  of Theorem 4 that they have been omitted .

it would be more in th e  sp i r i t  of the present paper to

obtain an expansion for Var 1 up to terms wh ich van ish as b -*

Unf ortunately, the authors have been unable to produce such a result

even in the simplest special (non—linear) cases . For the l inear

case , in which f~ 0, 2 — S , and I I, it Is possible to obtain
n _ n ~n

an expan sion of Var T — Vat I up to terms which  vanish as b -‘ ~~ as

an application of Theorem 3. This resul t  seems to be new except

under the further assumption that X
1 

-, 0 ——see Smith (1959).

18



Theorem 5. Assume that E (X~)
3 

< and is strongly non— 1,-t t t l t . -  i n

the sense of Stone (1965). Then as b

—3 ~ —2(51) Vi r I — p 1 h + i K + o(1)

where K is given by

K — o2ES2 /2pES +-2 {ES
2 /R S }2 _ 2 ES 3 

‘ES
1 1 4 1 1 3 1 T
+ -4- + + 4- -t

(S2)

-(ES
2 

/ES )E{min S — 2  E~ S -x}p {min S < — x~ dx
1+ 1+ n’O 0 T ( X )  a>fl

Proof. It is well—known (and is the linear case of Theorem 4) that

as b -.

(5 3) p E T = b + ES~ /2 ES
1 

+ o( l)
+ +

Similarly, for i — 1 or 2

(54) E(S —b) 1 -. (ES )~~~~~ I x 1 
~~S > x } d x

-
+ (O , tx) -e

Also ET
2
~ z ~~

‘, so by Wald ’s lemma for second moments (U. Chow ,

Robbins , and Siegmund , 1971, p. 23) and elementary algebra

p2 Var r - E(pT-S +S -~~ET)
2

- E(S
1 — p1)

2 +E(S1 - p ET)2 - 2Et (S —pT )(S
1~~~

E~))

(55)

-

- 02E1 (pEr-b)2 -E(S1-b)
2 +2E{(pr~~b ) ( S

1~~
b)~
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Hencc by (5~~) and (5 13 )

, Var ~~~~ + o~~ FS ’ l 2 ES *~~ (Es~~/ ES } 2

(56)

- / I ~:s ~ a (I) t 2~i F ((i — ET)(S — b))
+ +

It r e ma in - i  to ev.~ u,~~e the last term on the right hand side of (56).

By an eai-,v r e n ewa l ar g u m & ~nt

(57 Et(I-~~ )(S~ -b)}
0 I 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0, -‘~)

It follows from standard fluctuation identities (especially Feller,

1966, p. 570, equation (3.6)) that S has a distribution which 18

strongly non—l attiie In the sense of Stone (1965). Also E(X~)
3 

< ~~

imp l ies ES~ ~~~. Hence by Theorem 3 of Stone (1965) applied to the

renewal process determined by S , equation (54) for i — 1. may be
1
+

sharpened to read

—2(58) E ( S
I(b) 

— b) — ES /2ES~~~—H(b) +o(b logb)

where

( 5 9 )  H ( b )  — ~~ !‘~~S~ ~ v ) d v
h 

~ 
-

i~~ integrable at + ‘ . Hence by (58)

IE(S ( )  -x ) -ES~~ /2 ES 1 I

is a directly Rlemann Integrable function of x. It follows from

20



(53), (57), (58), and Theorem 3 that

(60) E{(T-ET)(S -h)} ~p~
’ I ~~~ -x) -ES

2 
/2ES }P~m ]n S ~ -x}dx.I 

~0,~’-) 
1(x) n—

Since Z(x) E(S - —x) sat isfies the renewal equation
~ (x )

Z — z + F * Z with F(v) — P {s < y}, it may be shown by taking
1+

Laplace transforms and making a Tay for series expansIon that

(61) / { E(s — x) - ES 2 /2ES }dx = l/4~ ES 2 /R S }2 - 1/6 ES 3 
IRS1( X) 1

+ 
1
+ 

1 T~ 1

and obviously

(62) 1 P{min S < — x}dx — — E{min(0,S1,S2,. .
[0,~’) n>0 ~

The theorem follows by substituting (60)—(62) Into (56).

Remark. Even in those cases where the moments of S can be
I -e

compu ted , the authors know of an general way to c o mp u t e  the Integral

appear ing in (52). However , f o r  n u m e r i c a l  p u rp o s e s  the last two

terms in (52) are “almost equal ” and opposite in sign and can prob-

ably be neglected. To see that they are “almost equal” c’h~ erve that

FIS
() —x } + ES 2 /2ES as x-’~~, and if this were aLtually an equali~~

rather than jus t a limit relation , the two terms would be equaL .

4. APPLICATIONS TO SEQUENTIAL ANALYSIS

Theorem 4 ma” be applied to yield asymptotic expansions for

the expected sample size of a variety of sequential tests , including

the classical sequential t , and F tests. Many of these

21



app lications are conceptually similar , and for brevity only two have

been I ncluded here . The first example was studied by Pollak and

Siegmund (1975), who Ignored the proble m of the excess over the

boundary in their analysis but otherwise provided a concrete model

from which Theorem 4 has b -en abstracted .

For 0 in some open interval J containing 0 assume that

exp(Ox —~~( O ) )  Is a probability density function with respect to a

probability distribution H and that ~~0) = ~i ’( 0) — 0 and *“(8) > 0

for all 0. Let F be a probability on J and define

f ( x ,t) I exp (yx — t4i (y))dF(y)
J

Assume that x
1
,x2,... are independent , identically distributed ran—

done variables such that for some 0 c j  — {o}

(63) Ex
1 

—

and that F’ exists in some neighborhood of 0 where it is continuous

and positive . Let s - X
k 
and Z

n 
= log f ( s ,n ) .  Take

1
— + y

0 •‘4’~ ~~2 
< 
2 

and A — {ls - nID’(O) l <n ). A straightforward

modification of the proof of Theorem 1 of Pollak and Siegmund (1975)

shows that on A
n

2 — Os —n c~ ( O) + log I exp [(y _ 8)s
n
_n(

~~
y) —~~~0))]dF(y)a n J

— S _ 41ogn+-~ log 2r(F ’(o))2/ip”(e)÷u (s~~
_ n

~P’(e))
2/2*”(e)n+w~ .

Here S — 0~ -n~ (O) and u and v are random variables for which
n n n n

22



1
- -- 4-
2 2 and 1w I < c with c non—random and converging ton — n — n n

0. Now assume that for some p > 4

(64) EIx
1 I’~ <

1 l_ 1Choose V 1 + < -
~~

- and set ci = -
~~

- + and B = -
~~ 

— y
1
, so

~ < min(20,2/3). Let V
n 

= u
n

(s
n

_ n
~~

’ (0 ) ) 2
I2Y’ (O) n + w on A and 0

elsewhere. It follows from (64) and Theorem 3 of Baum and Katz

(1965) tha t (11) holds , and by Proposition 1 that (14), (16), and

(17) are satisfied . It is easy to see that (10) need not hold with-

out further assumptions , but it does hold if either exp ( 13x~~~ U~) )  is

the true density function of x
1
, i.e.,

(65) P{x
1
c dx} — exp(Ox— i~(O))dH(x)

or (64) holds for some p > 4 and for  some ~2 > o

(66) ~V’(O) > for all ~ ~ J

That (65) imp lies (10) follows from Lemma 3 of Pollak and Siegmund

(1975). A simple application of the H~jek—R~ nyi—Chow inequality to

mod ify the proof of their Lemma 7 shows that (64) with p 4 and

(66) Imp ly (10). Hence by Theorem 4 as b -
~

I(8)E(T) -b +~~{log(b/I(0)) - log{2~i[F’(O)]
2/~j”(0)} 

_
~~
2/~ T~(e)]

(67)

+ ES~ /2ES + o(l)

where 1(0) — O iP’ ( O)  — 
~~8) and a

2 
— Var x

1
.
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The approxim ation (~~7) without the term involving S was
+

g i v e n  by Poila k and Siei’r~und (1975). Classical random walk theory

leads ‘o an evaluat i on ot ES
2 / ?  E~ in terms of

+

(~~~~~ ) n ’ f  S dP
(S 0) n

which in t~enera l is ver y dif fi cu lt t~ compute. For the special case

in W c h  the x
1 

ir e N (O,l ) ,

(69) ES~~ / 2  ES
1 

= 2 + - 20 B(O/2)

where

1 1 1
2 2 2B(S) = {n ~~0n ) — 0~~(— Bn ) }

A brief table of values for B is given by Siegmund (1975). A simple

useful approximation is given by

ES~~ /2 = ~ I ( 5 ~~~4 + h/s) + 0(0
2
) (0 0)

For the numer ical val u e considered in Tables 1 and 2 of Pollak and

Siegmund (l~ 75), use of t h e  term ES2 /2F.S reduces an error of

~+ 
1
+

ab o u t  10% by i f a c t o r  of r oughly one half. Except for special cases

computation of this term is quite diff icult and perhaps not worth

the ne~ es~ arv effort. This is in marked contrast to the approxima—

tion of error probab ilities , where analyzing the excess over the

boundary can lead to dr am at it improvement in the accuracy of the

a p p r o x i m a t i o n  ( c f .  Siegmund , 1975 , or part I of this paper).
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The second example i nvolv i a stopping rule s igoested by

Si~~ t r n u n d  (1977) for testing whether -
~ norma l mean is 0 when the

vari ance is unknown . }c t x1,x ),... he ind oendent and norma l ly

distributed with mean tj and v . I r La r: €- O~~. Put s = x + . .  . + xn 1 n
— —1 * 

-
~ 

— l . a  - 2x n s ,~~ = ( s  — n p ) / 3 . v n (x — x )
n n a n a 1 k n

— ~) 2 / .3 2 
- a,  and a = u / 3 . let Z = n / 2  1og~ 1 ~~~

2 /v 2
},n 1 k n n n

and f or m > 3 defIne T = T(h) = tnf(n n~~ m , Z ~b} . Obv lou EIv— .— n
— —l ~ 2

Z = n/2 g(x , n Y~, x ), w h e r e  g ( x ,y) — log(l—x /y). Expanding

g in a Tay lor seri es about (~~, 3 -t-~~~) and collecting terms y ields

2 = ~ log(1 +02) ~rO (1 +B
2
)
_1 

s~ - ~ e
2
(1+~~

2
)
_l 

t~n 2 n 2 a

+ ~~( l + P
2

)
_ 2

( l + ~~
4

) s~~
2

/n  + .(l+0 2)
2 

5
2((~

2
+2)t*2/n

— ( l + 0 2
)
2 

Os* t*/n + W
n

—2 ~~3 —2 * 3
~her e u I < W(n s +n It ) for some function t~ which equalsii — a fl

0 ,~ t 0 and is continuous there.

— 2 * 3  —z * 3Let A n I .s I n I t  ~ a I , whe re £ 0 cult 1—

~1ently slowly that (11) holds. L et  S n / 2  log( 1+ °
2 )

+ (I  + P2)~~ 5q * - 1 /2( 1  + ~
2
)
_l 

•~2 ~~~ ~, ( l)  
= ~~~~~ ~(2) =

ari d s~ t~~/n. Also let

v -
~~~ 1 + 5

2
)

2
( (14 ~

4) V W + ~~2 ( 9 2 
± 2 ) V~

2
~ - I +

on A and 0 elsewhere. With the aid of the identity

— (s*+t *)
2/n — v~

’
~ - V~

2
~ and Propos i t ion  1 it is ea~ v to

check that V
U) for  I — 1 ,2 . and 1 and hence V

n 
satisf y (14)—(17).
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As in the preceding example (10) requires a special argument. Let P
0

denot c the ~‘rohab i1itv under which the x ’s have expec tation ij O. From

the trivial inequalit y P
0

{T~~ n} < l~ Po
(Z
k
>b} and an analysis of

the ta ll of the t—dl~~~ribut ion , it may be shown for x > 0 that

(68) P
0
{T~~ bx} 0(b

2 
exp [- b(l-~~)])

as b ~ . By Lemm a 3 of P o l l a k  and Siegmund (1975), for arbitrary

e ~ 0 and v > 0

(6 9)  P{T~~ n } < 1_ n i (y ) + exp( 0 2
n / 2 + y On 2 )P

0
{T < fl}

Putt ing y = b
114 

in (69) and appealing to (68) yields (10) for any

~ < 2O~~ (1 — 2/rn ) . Hence by Theoren~ 4 , for  0 ~ 0 and in > 3

(70) l o g ( l + 0 2
)ET = 2b-l + h

4/ ( l + 0 2
)
2 
+ ~~

2 
/ 2 E s  + o(1)

1
+ 

T~

as b -

5. COMPARISON WITH WOODROOFE ’s RESULTS

The purpose of this section is to discuss briefly the

relation of the results ~~~ th is  paper to similar results obtained

recent t v by Woodroo te (l976a , 1977) by completely different methods.

In general term s the methods  of this paper and its companion develop

renewal t heory for non—linear functions of a random walk S byn

expand ing the f u n c tion and apply ing class ical renewal theory to the

dominant linear term . In contrast Woodroofe considers the first

26



‘~assige nt a random walk S to a non—linear boundary which he

~ina ivz es by expanding the boundary around an appropriate point. One

co nsequence of this difference i n  formulation is that in this paper

and its companion a fairl y small number of theorems pr ovide a un i-

fi ed thas rv , wh e reas  Woodroofe Is required to reappl y hi s met tea

w i : h  its fairl y elaborate Lomputations to deal with different stop—

:~ing rules . A technical difference is that Woodroofe requires a

blank et smoothness condition on the distribution of hi~ random

var iabl es , which has no counterpart in the present development.

Other technical differences are described below .

Let x
1
,x2,... be independent identically distributed random

variables with positive expectation i~ 
and finite variance ~~2 

Let

s = x + . . .  + x . Woodroofe ( 1976a) stud ies the behav ior of th e
n 1 n

s topping  rule

(71) T
1 

inf~ n : s > cn~
’} (c >O , O < y<. 1)

as c ~~~. (Actually for some results a sligh tly more general class

of stopping rules is considered , but since Woodroofe gives no app li-

cation for these more general rules , and since their introduction

would complicate this discussion , they have been omitted.)

Stat istical app lications of the stopp ing rule (71) have been des-

cribed by Woodroofe (l976b) and Siegmund (1977). Under the addi-

t ional restriction

(72) P(x
1
<O} — 0

Woodroofe (1977) studies the behavior of

— __ _:~..



(73) 1.., tn t { n n -‘ m , 5
n 

cii L(n) I (( > 0 , y > 1, in — 1,2, . . .)

as c 0. wtie rt L (n ~ — 1 • ~ofls? . / n  + o ( n~~ ) as r ~~~ . Both (71)

and (73) mai ha. w ritten in the form

(7.) 1 lnf{n : n ’rii , (n + ~+6 )g(n
1
s )  hI

+ 1, (1—.)w h e r e  g ( x )  = (x ) , b — g(c), and 6 - 0. Suppose more

generally that g (— ‘ , ~) * ‘3 ,~~) is t h r e e  times continuously dif-

ferentiable In a neighborhood of ii and that g ’(~.i) 
) (1.  Let C ~ 0

and A = {n 2
Js ~~ng

h 1 < u  I. By Taylor ’s theorem , on A
n 

(S _~~~~~~
)

2

n g (n~~ s )  ng(~i) + (s — n i i)g ’ (i.i ) + 
2n g”(j) + w

where w I  -~~ 
w (fl 2

1s ~~n~~~
3
) f o r  some function W which vanishes at 0

and Is continuous there. Let S
n 

— ng (ii) + (a — nii)g ’(~) and

(5
n~~~~~

2
l’2fl + (~~+~~~) g (n~~ s )  on A and 0 otherwise. It may

be shown as in the second example of Section 4 with the aid of

Proposition I that for suitable (11) and (14)—(17) are satisfied

with t — 2/3 , provided t j x
1~

4 
< ~~ . Thus Theorem 4 applies to give

an asymptotic expansion for E(T) provided that (10) holds , and as

alway s a special argument Is required here .

F or the stopping rules (71) and (73) proofs of (10) under

appropriate conditions follow from Woodroofe (1976a , Lemaa 7.1 and

1 977 , Lemma 2.3). Use of the H~ jek—R~ny i—Chow inequality (cf. Cho’w,

Robbins , and S iegmu nd , 1971 , p. 25) together with (50) would

simplif y these arguments.
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H e n c e  Wo o droofe ’ s expansions of ET
1 

and El
2 

f o l l o w  f r om

Th eo rem a .

I n Woodroofe ’s work a centra l role is played by results

r esembling Theorem 3, whIch form the basis for subsequen t

calculations . Or,e example Is Theorem 3.1 of Woodroofe (1976a),

which says  tha t If F fx 1
j
3 

< ~ and l-Joodroofe’s blanket smoothness

condition is satisfied , then for  T
i 

def ined by (71)

~ 
P {T

1 
n , S cn1 — - .

(7 5)
f (l-y)~i J~~~!

0 
P1s > ny~i-x for all n>1)dx

Deriving (75) from Theorem 3 requires the slightly stronger moment

condi tion E Ix 1 I~ 
< ~ for  some p > 1 + 51/2 With (71) rewritten in

the form of (74) (with 6 6 0) the inequality S > cn~
’ 

— y

becomes Z
n 

ng(n 1s )  > ~~~~~~~~~~~~~~~~~~~~ As in the proof of

Theor em 2 , it is easily shown that only the terms with in
1 

< n < n 2,

where n
1 

and n
2 
are defined in (21), are non—neglig ible in evalua-

ting the limit of the left hand sides of (75). For these values of

n , which are b / u ,  a simple expansion gives (b’~~~—yn~~)
1”1 ’

~
’

= b — ~
‘fy/(~~~ y)  + o(l). Now Theorem 3 and a simple change of

variable yield (75). A similar argument applies to the stopping

rule 12 of (73).
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ABSTRACT

This paper continues earlier work a the authors. An

analogue of Blackwell ’s renewa l theorem is obtained for processes

s + , where -

~~~~ 

is the n~~ partial sum of a sequenct

~~~~~~~~~ of independent  identica1l~ di strIbuted random variables

with finite positive mean and F, is independent of ~~~~~~~~~~~ and
- _

~~~~~~~ ~~~
-
~~

—— —
~~
-_ -- L ,-

has sample paths whiI-h are slowly changing in a sense made precise - 
~.

below . As a consequence , asympto tic expansions up to terms tending

to 0 are obtained tor the expected value of certain first pas sage

times . Applications to sequentidi analysts are given
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